Digital health: technology as a catalyst for transformation in healthcare

Technological advances are revolutionizing several sectors, including the healthcare sector. Digital health has allowed the development of a wide range of possibilities to improve the quality of healthcare in a variety of ways, such as promoting access to medical care, accelerating diagnosis and decision-making processes, improving patient outcomes and reduce costs.
Data is transforming healthcare by changing the way medical care is delivered and managed. The convergence of big data, artificial intelligence, wearables and advanced analytics is transforming the paradigm from a traditional reactive system into a more proactive, personalized and predictive healthcare approach. This article focuses on the different ways in which data and emerging technologies are transforming healthcare, including the Portuguese perspective on the digitalization of healthcare.
Big data
In recent decades, data collection and storage has been a common practice in healthcare, along with a growing interest in the secondary use of large amounts of data – big data – to improve clinical care and public health. Gartner proposed the “3V” definition of Big Data: “Big Data are high-volume, high-velocity, and high-variety information assets that require innovative and cost-effective ways of processing information for better insight and decision making” (Beyer et al).
Collected primarily from electronic health records, health insurance records, pharmacy data, medical devices and sensors and biomedical research, clinical data and real-world data help healthcare professionals better understand patient populations, comprehend the effectiveness of treatments, and support regulatory decisions, leading to:
• Personalized medicine: Based on genomic data, medical history, biomarkers, lifestyle information and patient health metrics, healthcare will become tailored to individual needs, increasing treatment effectiveness, reducing side effects and anticipating response to medications.
• Population health management: Aggregating and analyzing clinical data allows caregivers to identify populations at risk for certain diseases and create preventive public health interventions.
• Value-based healthcare: By analyzing patients’ clinical indicators and costs, care providers and insurers can evaluate health outcomes and focus on delivering quality care that reduces hospital readmissions and promotes health in the long term, contributing to a value-based care approach.
Artificial intelligence
The consistent collection of clinical data facilitates the use of technologies that systematize not only the amount of health information collected and stored electronically, but also the detail of the conclusions that can be drawn from these data (Adamson et al.).
By identifying patterns and trends from large complex data sets, artificial intelligence (AI) has the ability to increase the accuracy and speed of disease diagnosis and drug development, optimize hospital workflows and manage healthcare systems, and strengthen disease surveillance and outbreak response.
The use of AI prediction models has widespread use in healthcare, whether for identifying patients at high risk of readmission or developing targeted interventions to reduce readmissions (Mohanty et al.), predicting patient admission rates and timing length of hospital stay through improving capacity planning and resource allocation (Davis et al.), forecasting hospital bed occupancy rates and demand (Tello et al.), as well as forecasting and diagnosing several diseases, such as cardiomyopathy (Xia et al.), diabetes (Lu et al.) or Alzheimer’s (Uysal and Ozturk). Ultimately, AI can have a huge impact on:
• Predictive and preventive care: By analyzing patterns in patient data, algorithms can identify early warning signs in chronic diseases, enabling interventions and preventative measures, reducing healthcare costs and improving patient outcomes.
• Clinical decision support systems: Data-driven tools can provide clinicians with real-time case-based decision support systems and predictive models. These tools can help doctors make more informed decisions, reduce diagnostic errors, and choose the most effective treatment options.
• Unstructured data analysis: The collected health data can be structured and unstructured, as integrating data stored in both formats can add significant value to healthcare. Natural Language Processing can extract meaningful information from unstructured healthcare data such as medical notes, clinical reports, speech and research articles, helping to automate data entry, discover patterns in patient narratives and improve the quality of documentation in health systems.
Telemedicine and remote monitoring
The COVID-19 pandemic has been a catalyst for the development and adoption of a wide range of telehealth technologies by the health systems, such as virtual facilities and telecare platforms (Bouabida et al). The Internet of Things (IoT) and wearables have played a significant role in the expansion of telehealth, as data collected from these network of devices play a key role in enabling remote patient monitoring and remote care. Such devices can collect metrics – heart rate, blood pressure, glucose levels, activity levels and sleep patterns – which can be automatically transmitted to healthcare professionals. Thus, telemedicine and wearables enable continuous, real-time monitoring of patients, both for preventive healthcare and chronic disease management, reducing hospital admissions and enabling provision of care to remote populations. Additionally, telemedicine and wearables can significantly improve:
• Patient engagement: These technologies enable patients to take a more active role in managing their healthcare and monitor and track their progress, promoting self-care and adherence to treatment plans.
• Data-driven clinical trials: By aggregating data from real-world, wearable, and patient-reported outcomes and analyzing data from larger, more diverse populations, AI can help identify eligible patients for clinical trials, optimize trial designs, and generate insights about the efficacy and safety of drugs, creating virtual or hybrid clinical trials that will be faster, cheaper and more inclusive.
Interoperability and data security
Healthcare data is challenging. On the one hand, it is sensitive and require a high level of privacy and security to be shared. On the other hand, the inability to access health data can cause substantial harm to individuals and populations. Given the increasing in life expectancy, sharing health data will be critical. As healthcare systems generate more data, there is an increasing need for interoperability between different healthcare information technology systems. Interoperability allows healthcare providers in hospitals, clinics and laboratories to access patient data from multiple sources. Some interoperability standards, such as Fast Healthcare Interoperability Resources (HL7 FHIR) and Electronic health information exchange (HIE), are making it possible to exchange health data between different players, allowing for better coordination of care and reducing redundancies in medical exams or treatments.
Furthermore, technologies such as blockchain are revolutionizing the way health data is stored and shared, ensuring that patient information is secure, immutable and accessible only by authorized parties, eliminating issues related to fraud and missing information, and ensuring accuracy in health records while giving patients more control to grant access to their records.
On the other hand, ensuring compliance with regulations such as the General Data Protection Regulation (GDPR) is critical to protect patient data and maintain trust. As privacy concerns grow, synthetic data is being used to simulate real-world patient data without exposing sensitive information. AI can generate synthetic datasets that reflect real patient behaviors for research and model training purposes, enabling the development of new treatments and public health strategies without exposing sensitive patient information, ensuring compliance with privacy laws.
Implications of data intelligence in healthcare management
The implications of data intelligence in healthcare management represent a critical advancement that leverages big data, AI, and data analytics to improve decision-making, patient care, and operational efficiency. This underlies the growing dependence of contemporary healthcare systems on effective data management to improve hospital performance, facilitate real-time analytics, and ensure ethical implementation of AI technologies.
Recent studies have described the decisive role that data governance, integration and quality play in transforming healthcare operations, which directly impacts care outcomes, patient safety and research possibilities (Tang et al.). The ability to plan ahead through predictive analytics allows hospitals to use this tool to reduce waiting times, proactively schedule follow-up appointments, identify areas of inefficiency, and monitor the allocation of human and logistical resources. This ability depends heavily on two main factors that cannot be dissociated: (i) comprehensive data collection, including patient admission records, demographic and seasonal information, and even external indicators such as public health data and local events, and (ii) high quality and accuracy of data, especially real-time data, which become crucial in emergency scenarios such as pandemic waves (Klein et al.).
Digitalization of healthcare: the Portuguese perspective
Portugal has been creating conditions to accelerate digitalization through an action plan for digital transition, which comprises a pillar related to the digitalization of public services and the national health system, including the adoption of a data-based approach in hospitals, from central clinical activities to critical management operations.
As part of the National Strategy for the Health Information Ecosystem – ENESIS 2020-2022, the Advanced Analytics and Intelligence Unit of the Shared Services of the Portuguese Ministry of Health (SPMS) launched the data strategy for the next generation of the National Health Service (NHS) (Pinto et al.). It contains the vision, key areas and principles of secondary data use, advanced analytics and artificial intelligence to improve the health of the Portuguese population and calls for a comprehensive approach to reinforce the digital transformation of the NHS through a strong data governance model and including AI-supported systems to add value.
More recently, Portugal stood out as the second European country that most increased its maturity in terms of access to digital health data in the report ‘Digital Decade 2024: Study of Digital Health Indicators’ (Winkel et al.). The study assessed the progress towards the Digital Decade’s key objective of ensuring that 100% of EU citizens have access to their electronic health record by 2030 and covered four main areas: (i) electronic access services for citizens, (ii) healthcare data categories, (iii) technology and coverage, and (iv) access opportunities. In terms of citizens’ ability to access their electronic health record, Portugal scored 100%, ranking 5th in the technology and access coverage indicator. In the indicators of availability of categories of electronic health data and opportunity for access to the electronic health record by specific groups such as children, elderly people or citizens with disabilities, Portugal improved 17% and 38%, respectively, compared to 2022.
These results are promising and reveal the continuous improvement of digital health over the last years. Data CoLAB’s mission is aligned with this purpose of empowering the healthcare sector with the skills necessary to achieve a sustainable digital transformation, and to contribute to the digitalization of the sector by developing innovative data acquisition, interoperability, intelligence and data visualization solutions. and data security.
Conclusion
In summary, data has the ability to profoundly transform healthcare, making it more predictive, personalized, proactive and efficient. From optimizing clinical flows to increasing patient engagement and improving health indicators, data and emerging technologies are on track to become key in reshaping the healthcare landscape.
References
Beyer, M., & Laney, D. (2012). The importance of ‘Big Data’: A definition. Gartner report, 1–9.
Adamson, B., et al. (2023). Approach to machine learning for extraction of real-world data variables from electronic health records. Frontiers in Pharmacology, 14, 1180962.
Mohanty, S. D., et al. (2022). Machine learning for predicting readmission risk among the frail: Explainable AI for healthcare. Patterns, 3(1).
Davis, S., et al. (2022). Effective hospital readmission prediction models using machine-learned features. BMC Health Services Research, 22(1), 1415.
Tello, M., et al. (2022). Machine learning-based forecast for the prediction of inpatient bed demand. BMC Medical Informatics and Decision Making, 22(1), 55.
Xia, C., et al. (2019). A multi-modality network for cardiomyopathy death risk prediction with CMR images and clinical information. In D. Shen et al. (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2019 (pp. 577–585). Springer International Publishing.
Lu, H., et al. (2022). A patient network-based machine learning model for disease prediction: The case of type 2 diabetes mellitus. Applied Intelligence, 52(3), 2411–2422.
Uysal, G., & Ozturk, M. (2020). Hippocampal atrophy-based Alzheimer’s disease diagnosis via machine learning methods. Journal of Neuroscience Methods, 337, 108669.
Bouabida, K., Lebouché, B., & Pomey, M. P. (2022). Telehealth and COVID-19 pandemic: An overview of the telehealth use, advantages, challenges, and opportunities during COVID-19 pandemic. Healthcare (Basel), 10(11), 2293.
Tang, J., et al. (2020). Pharmacist and data-driven quality improvement in primary care (PDQIP): A qualitative study of anticipated implementation factors informed by the Theoretical Domains Framework. BMJ Open, 10(2), e033574.
Klein, B., et al. (2023). Forecasting hospital-level COVID-19 admissions using real-time mobility data. Communications Medicine, 3(1), 1–9.
Pinto, C. S., et al. (2019). From big data to smart health: Putting data to work for the public’s health.
European Commission: Directorate-General for Communications Networks, Content and Technology, Page, M., Winkel, R., Behrooz, A., & Bussink, R. (2024). 2024 digital decade eHealth indicator study – Final report. Publications Office of the European Union
1. Introduction to the Digital Product Passport
The Digital Product Passport (DPP) is a digital solution containing detailed information about a product throughout its entire lifecycle, from raw material extraction to recycling or disposal, promoting transparency, sustainability, and the circular economy (European Commission). This concept gained traction with the European Green Deal, launched in December 2019, as part of the European Union’s (EU) effort to reduce the environmental impact of products and create a more sustainable economy.
In 2020, the EU’s Circular Economy Action Plan was published, highlighting several initiatives aimed primarily at extending product lifespan and promoting practices like reuse, repair, and recycling. Within this context, the DPP was identified as a key solution to enhance product traceability and improve information flow along its value chain.
In 2022, the EU’s proposal for the Ecodesign for Sustainable Products Regulation (ESPR) officially laid the foundation for DPP implementation. This regulation aims to ensure that all products marketed in the EU are designed more sustainably, focusing on energy efficiency, durability, and recyclability. Within this regulation, the DPP is seen as a key tool to provide detailed information on the environmental performance of products, helping consumers, businesses, and regulators make more informed decisions. Moreover, the DPP also seeks to give end-users greater control by ensuring they have access to clear and comprehensive information about the origin, composition, and environmental impact of the products they purchase.
The DPP is highlighted as one of the most promising initiatives by the EU to enable the transition to a circular economy, and its development is crucial for ensuring supply chains are more transparent, sustainable, and resilient.

Figure 1 – Reference to the PDP by the EU over time
2. Principais setores de aplicação e benefícios do PDP
O PDP está a ser adotado em várias indústrias estratégicas, principalmente aquelas que enfrentam desafios mais significativos em termos de sustentabilidade e rastreabilidade. Alguns dos setores pioneiros na implementação do PDP incluem o setor das baterias, o setor da moda e têxteis e a indústria eletrónica. A aplicação do PDP nesses setores reflete o seu impacto potencial na economia circular, permitindo uma gestão mais eficiente dos recursos e melhorando o desempenho ambiental dos produtos.
2.1. Setor das baterias
O setor das baterias está no centro da transição para energias limpas, especialmente com o crescimento da mobilidade elétrica e a expansão das energias renováveis. No entanto, a produção de baterias envolve a utilização de materiais críticos, como lítio, cobalto e níquel, cuja extração e eliminação apresentam sérios desafios ambientais e sociais. O PDP oferece uma solução eficaz para aumentar a rastreabilidade das baterias, desde a mineração dos materiais até à sua fabricação, uso, e eventual reciclagem ou eliminação.
Com o PDP, é possível acompanhar as condições de utilização de cada bateria e facilitar a reciclagem eficiente dos seus componentes no final da sua vida útil. Isto é especialmente importante à luz da regulamentação europeia para baterias, que estabelece metas ambiciosas para a reciclagem e reutilização de materiais. Além disso, ao fornecer informações detalhadas sobre a composição e o desempenho das baterias, o PDP permite que os fabricantes melhorem os processos de design, promovendo baterias mais duradouras, eficientes e fáceis de reciclar.

Figura 2 – Exemplo de um PDP no setor das baterias
2.2. Setor da Moda e Têxteis
A indústria da moda é uma das mais poluentes, com elevado consumo de recursos e produção de resíduos. O PDP oferece uma solução eficaz para aumentar a transparência ao longo da cadeia de valor têxtil, proporcionando informações detalhadas sobre a origem dos materiais, os processos de produção, e o impacto ambiental associado a cada peça de vestuário. Ao fornecer estes dados aos consumidores, o PDP incentiva escolhas mais conscientes e sustentáveis. Além disso, facilita práticas de reciclagem e reutilização, elementos centrais para a transição do setor da moda para um modelo mais circular.

2.3. Indústria Eletrónica
O setor eletrónico também enfrenta desafios críticos, como a rápida desatualização dos produtos e a difícil reciclagem dos seus dispositivos, que frequentemente contêm componentes tóxicos ou materiais valiosos, como metais preciosos. O PDP melhora a rastreabilidade dos componentes eletrónicos, ajudando a identificar materiais que podem ser recuperados de forma segura e eficaz. Com o aumento da legislação sobre a reciclagem de produtos eletrónicos, o PDP ajuda as empresas a cumprirem com os requisitos regulatórios e a reduzirem o impacto ambiental dos seus produtos.
3. Benefícios do PDP para as empresas e clientes
A implementação do PDP oferece uma série de benefícios tanto para as empresas quanto para os consumidores e a sociedade em geral. Para as empresas, o PDP melhora a gestão da cadeia de fornecimento e proporciona uma oportunidade de diferenciação no mercado, ao demonstrar o compromisso com a sustentabilidade. O PDP também facilita a inovação de produtos, promove o design para reutilização e reciclagem, o que pode, entre outros, ajudar a reduzir a dependência de matérias-primas virgens.
Para os consumidores, o PDP oferece um nível de transparência sem precedentes. Os clientes finais têm acesso a informações claras e detalhadas sobre a origem e impacto dos produtos que consomem, permitindo-lhes fazer escolhas mais informadas e sustentáveis. Além disso, o PDP pode contribuir para melhorar a confiança dos consumidores nas empresas, ao assegurar que estas estão a adotar práticas responsáveis e em conformidade com os regulamentos ambientais.

Figura 4: Benefícios do PDP
No entanto, apesar dos seus inúmeros benefícios, a implementação do PDP enfrenta uma série de desafios complexos que precisam ser superados para que este possa alcançar todo o seu potencial.
4. Principais desafios do PDP
Embora o PDP ofereça inúmeros benefícios para a sustentabilidade e economia circular, a sua implementação apresenta vários desafios. Estes vão desde o aumento dos custos de produção até à adaptação do mercado e dos consumidores. Em seguida, serão analisadas algumas das principais barreiras à adoção em larga escala do PDP.
4.1 Custo dos produtos
A introdução do PDP em várias indústrias trará desafios financeiros significativos, principalmente devido ao investimento em tecnologia que as empresas terão de fazer. Estes custos adicionais surgem em várias áreas, incluindo:
• Software: As empresas terão de escolher entre desenvolver o seu próprio sistema de PDP ou adquirir uma solução existente, o que poderá incluir custos de licenciamento, atualizações e manutenção de software.
• Hardware: A implementação de sensores e dispositivos de monitorização para recolher dados em tempo real (como consumo de energia, água, e emissões de CO2) representa um custo relevante. Também a digitalização requer uma infraestrutura tecnológica robusta, muitas vezes inexistente em empresas de menor dimensão.
• Recursos Humanos: Para assegurar o uso eficiente do PDP, as empresas terão de investir em formação especializada para os seus colaboradores, assim como contratar novos técnicos qualificados para gerir e monitorizar o sistema.
Estes investimentos terão um impacto direto no custo de produção, o que se refletirá inevitavelmente no preço final dos produtos. Dada a atual pressão inflacionária global, um aumento generalizado de preços pode agravar a acessibilidade económica para os consumidores, especialmente em setores onde os bens são essenciais.
Considerações adicionais:
- Impacto nas pequenas e médias empresas (PMEs): Embora grandes empresas possam ter os recursos necessários para absorver estes custos, PMEs podem enfrentar maiores dificuldades. Muitas destas empresas não dispõem da infraestrutura ou do capital necessário para suportar investimentos significativos, o que pode resultar na exclusão de mercado para algumas delas.
- Necessidade de subsídios ou incentivos governamentais: Para mitigar os custos iniciais e evitar um aumento excessivo de preços, incentivos governamentais podem ser essenciais. Isto pode incluir suporte para a aquisição de tecnologia ou deduções fiscais para empresas que cumpram os requisitos do PDP.
- Risco de desigualdade de preços: Um aumento nos custos dos produtos pode agravar as desigualdades de consumo, especialmente entre consumidores com pouco poder de compra, tornando mais difícil o acesso a produtos essenciais. Políticas públicas de apoio ao consumidor, como apoios diretos para produtos sustentáveis podem ajudar a mitigar este impacto.
4.2. Perda de competitividade na exportação
A obrigatoriedade do PDP na Europa, sem que exista uma implementação global, pode levar a desigualdades na exportação de produtos para mercados fora da UE. Esta situação cria um cenário competitivo desfavorável para as empresas europeias. Vejamos o seguinte exemplo:
• Empresa X, sediada na Europa, e Empresa Y, sediada nos Estados Unidos, produzem exatamente o mesmo produto e têm o objetivo de o vender a um cliente na Ásia.
• Supondo que ambas enfrentam os mesmos custos de produção, como mão-de-obra e energia, a Empresa X terá de assumir os custos adicionais da implementação do PDP, conforme exigido pela regulamentação europeia.
Neste contexto, a Empresa X pode ser forçada a aumentar o preço do seu produto para cobrir os custos do PDP, enquanto a Empresa Y não enfrenta essa mesma exigência regulamentar. Assim, a Empresa Y pode oferecer o mesmo produto a um preço mais competitivo, ganhando uma vantagem significativa no mercado externo.
Considerações adicionais:
- Disparidades regulatórias: Empresas fora da UE não têm os mesmos custos associados ao cumprimento das regulamentações do PDP, o que pode reduzir a competitividade das empresas europeias nos mercados globais.
- Implicações a longo prazo: A longo prazo, esta perda de competitividade pode afetar as exportações, afetando a sustentabilidade das empresas europeias e, por extensão, a economia da UE.
- Potencial para barreiras comerciais: Embora o PDP seja essencial para promover a sustentabilidade, também pode criar barreiras comerciais indiretas para empresas europeias que competem em mercados globais sem regulamentações equivalentes.
4.3. Mudança de hábito do consumo da população
A implementação do PDP visa promover a economia circular, reduzir a poluição ambiental e incentivar o consumo de produtos mais sustentáveis. No entanto, o sucesso desta iniciativa depende não só da tecnologia e regulamentação, mas também da mudança de hábitos de consumo da população.
Um dos maiores desafios é garantir que os consumidores escolham conscientemente produtos mais sustentáveis, mesmo que estes possam ter um preço mais elevado. Atualmente, com a ameaça de recessão na Europa, o aumento da inflação e a perda de poder de compra, é expectável que muitos consumidores priorizem o preço sobre a sustentabilidade.
- Disparidade de preços: Produtos com PDP e melhores indicadores ambientais podem ser mais caros devido ao investimento em tecnologia. No entanto, os consumidores, especialmente em momentos de crise económica, tendem a escolher produtos mais baratos, independentemente do impacto ambiental.
Considerações adicionais
Consciencialização vs. preço: A sensibilização ambiental pode ser alta, mas o fator preço continua a ser determinante. Sem incentivos financeiros (como benefícios fiscais para produtos sustentáveis), é improvável que haja uma mudança significativa no comportamento de compra.
Impacto da crise económica: A inflação, o desemprego e a perda de poder de compra podem travar o progresso na adoção de produtos sustentáveis, prejudicando os objetivos da UE para uma economia mais circular.
- Incentivos ao consumo sustentável: Políticas públicas que ofereçam incentivos aos consumidores para a compra de produtos sustentáveis podem ser cruciais para superar este obstáculo, tais como redução de IVA em produtos com credenciais ambientais ou subsídios diretos.
5. Conclusão
A implementação do Passaporte Digital do Produto traz consigo benefícios claros em termos de sustentabilidade e economia circular, mas os desafios não podem ser ignorados. Desde o aumento dos custos de produção, à perda de competitividade no mercado global e à resistência do consumidor a pagar mais por produtos sustentáveis, é necessário encontrar um equilíbrio. Para mitigar os efeitos negativos, será crucial o desenvolvimento de políticas públicas que incentivem tanto as empresas como os consumidores a abraçar esta transformação de forma acessível e justa.
Referências Bibliográficas
European Data Portal (2024). EU’s digital product passport: Advancing transparency and sustainability. Retrieved October 14, 2024, from https://data.europa.eu/en/news-events/news/eus-digital-product-passport-advancing-transparency-and-sustainability
European Commission (2019). European Green Deal. Retrieved October 14, 2024, from https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_pt
European Commission (2020). Circular Economy Action Plan. Retrieved October 14, 2024, from https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en
European Commission (2022). Ecodesign for Sustainable Products Regulation. Retrieved October 14, 2024, from https://commission.europa.eu/energy-climate-change-environment/standards-tools-and-labels/products-labelling-rules-and-requirements/ecodesign-sustainable-products-regulation_en
Qliktag. (2024). EU Digital Product Passport Powered by the Qliktag Platform. Retrieved October 16, 2024, from https://qliktag.com/eu-digital-product-passport
Circle Economy Foundation. (2023). Closed Loop Pilot – Pioneering circular business models in fashion. Retrieved October 16, 2024, from https://knowledge-hub.circle-economy.com/article/9470
Contentserv. (2023). Digital Product Passport: Ticket to achieving a circular economy. Retrieved October 16, 2024, from https://www.contentserv.com/blog/digital-product-passport-ticket-to-achieving-circular-economy